ค่าเฉลี่ยเคลื่อนที่: อะไรคือตัวชี้วัดทางเทคนิคที่เป็นที่นิยมมากที่สุดค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อวัดทิศทางของแนวโน้มในปัจจุบัน ค่าเฉลี่ยเคลื่อนที่ทุกประเภท (เขียนโดยทั่วไปในบทแนะนำนี้เป็น MA) คือผลทางคณิตศาสตร์ที่คำนวณโดยเฉลี่ยจำนวนจุดข้อมูลที่ผ่านมา เมื่อพิจารณาแล้วค่าเฉลี่ยที่เกิดขึ้นจะถูกวางแผนลงในแผนภูมิเพื่อให้ผู้ค้าสามารถดูข้อมูลที่ราบรื่นแทนที่จะมุ่งเน้นไปที่ความผันผวนของราคาในแต่ละวันที่มีอยู่ในตลาดการเงินทั้งหมด รูปแบบที่ง่ายที่สุดของค่าเฉลี่ยเคลื่อนที่โดยทั่วไปหมายถึงค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย (SMA) โดยคำนวณค่าเฉลี่ยเลขคณิตของชุดค่าที่กำหนด ตัวอย่างเช่นในการคำนวณค่าเฉลี่ยเคลื่อนที่ 10 วันคุณจะเพิ่มราคาปิดจาก 10 วันที่ผ่านมาและหารผลตาม 10 ในรูปที่ 1 ผลรวมของราคาในช่วง 10 วันที่ผ่านมา (110) คือ หารด้วยจำนวนวัน (10) เพื่อให้ได้ค่าเฉลี่ย 10 วัน หากผู้ค้าต้องการเห็นค่าเฉลี่ย 50 วันแทนจะต้องมีการคำนวณประเภทเดียวกัน แต่จะรวมราคาในช่วง 50 วันที่ผ่านมา ค่าเฉลี่ยที่เกิดขึ้นด้านล่าง (11) คำนึงถึงจุดข้อมูล 10 จุดที่ผ่านมาเพื่อให้ผู้ค้าทราบว่าสินทรัพย์มีราคาเทียบกับ 10 วันที่ผ่านมาอย่างไร บางทีคุณอาจสงสัยว่าทำไมผู้ค้าทางเทคนิคเรียกเครื่องมือนี้ว่าเป็นค่าเฉลี่ยเคลื่อนที่และไม่ใช่แค่ค่าเฉลี่ยปกติ คำตอบก็คือเมื่อค่าใหม่มีพร้อมใช้งานจุดข้อมูลที่เก่าที่สุดต้องถูกลดลงจากชุดข้อมูลและจุดข้อมูลใหม่ ๆ ต้องมาเพื่อแทนที่ ดังนั้นชุดข้อมูลจึงมีการย้ายข้อมูลบัญชีใหม่ ๆ ไปเรื่อย ๆ วิธีการคำนวณนี้ช่วยให้แน่ใจได้ว่าจะมีการบันทึกข้อมูลปัจจุบันเท่านั้น ในรูปที่ 2 เมื่อมีการเพิ่มค่าใหม่ของชุดที่ 5 ช่องสีแดง (แทนจุดข้อมูล 10 จุดที่ผ่านมา) จะเลื่อนไปทางขวาและค่าสุดท้ายของ 15 จะถูกลดลงจากการคำนวณ เนื่องจากค่าที่ค่อนข้างเล็ก 5 จะแทนที่ค่าที่สูงถึง 15 คุณจึงคาดว่าจะเห็นค่าเฉลี่ยของการลดข้อมูลชุดซึ่งในกรณีนี้มีค่าตั้งแต่ 11 ถึง 10 ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่เมื่อค่าของ MA ได้รับการคำนวณพวกเขาจะวางแผนลงบนแผนภูมิและเชื่อมต่อแล้วเพื่อสร้างเส้นค่าเฉลี่ยเคลื่อนที่ เส้นโค้งเหล่านี้มีอยู่ทั่วไปในแผนภูมิของผู้ค้าด้านเทคนิค แต่วิธีการใช้งานเหล่านี้อาจแตกต่างกันอย่างมาก (ในภายหลัง) ดังที่เห็นในรูปที่ 3 คุณสามารถเพิ่มค่าเฉลี่ยเคลื่อนที่ได้มากกว่าหนึ่งรายการในแผนภูมิโดยการปรับจำนวนช่วงเวลาที่ใช้ในการคำนวณ เส้นโค้งเหล่านี้ดูเหมือนจะเสียสมาธิหรือทำให้เกิดความสับสนในตอนแรก แต่คุณจะคุ้นเคยกับมันเมื่อเวลาผ่านไป เส้นสีแดงเป็นเพียงราคาเฉลี่ยในช่วง 50 วันที่ผ่านมาในขณะที่เส้นสีน้ำเงินเป็นราคาเฉลี่ยในช่วง 100 วันที่ผ่านมา ตอนนี้คุณเข้าใจว่าค่าเฉลี่ยเคลื่อนที่คืออะไรและแนะนำให้ใช้ค่าเฉลี่ยเคลื่อนที่ที่ต่างกันและดูว่าค่าเฉลี่ยเคลื่อนที่แตกต่างจากค่าเฉลี่ยเคลื่อนที่ที่กล่าวถึงก่อนหน้านี้เท่าไร ค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายเป็นที่นิยมอย่างมากของผู้ค้า แต่เป็นตัวบ่งชี้ทางเทคนิคทั้งหมดก็มีนักวิจารณ์ หลายคนอ้างว่าประโยชน์ของ SMA มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีน้ำหนักเหมือนกันโดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากกว่าข้อมูลที่เก่ากว่าและควรมีอิทธิพลมากขึ้นต่อผลลัพธ์สุดท้าย ในการตอบสนองต่อคำวิจารณ์นี้ผู้ค้าเริ่มให้น้ำหนักกับข้อมูลล่าสุดซึ่งนำไปสู่การประดิษฐ์เครื่องคิดเลขใหม่ ๆ ประเภทต่างๆซึ่งเป็นที่นิยมมากที่สุดซึ่งเป็นค่าเฉลี่ยเคลื่อนที่แบบเสวนา (EMA) (สำหรับการอ่านเพิ่มเติมโปรดดูข้อมูลเบื้องต้นเกี่ยวกับค่าเฉลี่ยถ่วงน้ำหนักและความแตกต่างระหว่าง SMA กับ EMA) ค่าเฉลี่ยเคลื่อนที่แบบเสวนาค่าเฉลี่ยเคลื่อนที่แบบเสวนาคือค่าเฉลี่ยเคลื่อนที่ที่ให้น้ำหนักมากกว่าราคาล่าสุดในความพยายามที่จะทำให้การตอบสนองดีขึ้น ข้อมูลใหม่ ๆ การเรียนรู้สมการที่ค่อนข้างซับซ้อนสำหรับการคำนวณ EMA อาจไม่จำเป็นสำหรับผู้ค้าจำนวนมากเนื่องจากเกือบทุกชุดรูปแบบแผนภูมิทำคำนวณสำหรับคุณ อย่างไรก็ตามสำหรับคุณ geeks คณิตศาสตร์ออกมีที่นี่สมการ EMA: เมื่อใช้สูตรในการคำนวณจุดแรกของ EMA คุณอาจสังเกตเห็นว่าไม่มีค่าที่จะใช้เป็น EMA ก่อนหน้านี้ ปัญหาเล็ก ๆ นี้สามารถแก้ไขได้โดยเริ่มต้นการคำนวณด้วยค่าเฉลี่ยเคลื่อนที่ที่เรียบง่ายและต่อเนื่องโดยใช้สูตรด้านบนจากที่นั่น เราได้จัดเตรียมสเปรดชีตตัวอย่างไว้ในตัวอย่างชีวิตจริงในการคำนวณทั้งค่าเฉลี่ยเคลื่อนที่แบบเรียบและค่าเฉลี่ยเคลื่อนที่แบบเสวนา ความแตกต่างระหว่าง EMA กับ SMA ตอนนี้คุณเข้าใจดีว่า SMA และ EMA ถูกคำนวณไปแล้วลองดูว่าค่าเฉลี่ยเหล่านี้แตกต่างกันอย่างไร เมื่อพิจารณาการคำนวณ EMA คุณจะสังเกตเห็นว่าจุดข้อมูลสำคัญ ๆ อยู่ในจุดข้อมูลล่าสุดทำให้เป็นประเภทของค่าเฉลี่ยถ่วงน้ำหนัก ในรูปที่ 5 ตัวเลขของช่วงเวลาที่ใช้ในแต่ละค่าเฉลี่ยเหมือนกัน (15) แต่ EMA จะตอบสนองต่อราคาที่เปลี่ยนแปลงได้เร็วขึ้น สังเกตว่า EMA มีมูลค่าสูงขึ้นเมื่อราคาเพิ่มขึ้นและลดลงเร็วกว่า SMA เมื่อราคาลดลง การตอบสนองนี้เป็นเหตุผลหลักที่ทำให้ผู้ค้าจำนวนมากต้องการใช้ EMA มากกว่า SMA อะไรที่แตกต่างกันระหว่างวันหมายถึงค่าเฉลี่ยเคลื่อนที่เป็นตัวบ่งชี้ที่ปรับแต่งได้โดยสิ้นเชิงซึ่งหมายความว่าผู้ใช้สามารถเลือกช่วงเวลาที่ต้องการได้อย่างอิสระเมื่อสร้างค่าเฉลี่ย ช่วงเวลาที่ใช้บ่อยที่สุดในการเคลื่อนที่โดยเฉลี่ยอยู่ที่ 15, 20, 30, 50, 100 และ 200 วัน ช่วงเวลาสั้น ๆ ที่ใช้ในการสร้างค่าเฉลี่ยความละเอียดอ่อนมากขึ้นคือการเปลี่ยนแปลงราคา ยิ่งช่วงเวลาที่ยาวนานขึ้นเท่าไรก็ยิ่งอ่อนไหวหรือเรียบเนียนขึ้นเท่านั้นโดยเฉลี่ยแล้ว ไม่มีกรอบเวลาที่เหมาะสมที่จะใช้เมื่อตั้งค่าค่าเฉลี่ยเคลื่อนที่ของคุณ วิธีที่ดีที่สุดในการพิจารณาว่ารูปแบบใดที่ดีที่สุดสำหรับคุณคือการทดสอบกับช่วงเวลาต่างๆจนกว่าคุณจะพบกับช่วงเวลาที่เหมาะสมกับกลยุทธ์ของคุณ ค่าเฉลี่ยเคลื่อนไหว: วิธีการใช้การวิเคราะห์ทางเทคนิค: ค่าเฉลี่ยเคลื่อนไหวส่วนใหญ่รูปแบบแผนภูมิแสดงการเปลี่ยนแปลงของราคาในรูปแบบต่างๆ ซึ่งอาจทำให้ผู้ค้าได้รับความคิดในเรื่องแนวโน้มความปลอดภัยโดยรวม หนึ่งวิธีง่ายๆที่ผู้ค้าใช้ในการต่อสู้นี้คือการใช้ค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยเคลื่อนที่คือราคาเฉลี่ยของการรักษาความปลอดภัยในช่วงเวลาที่กำหนด โดยการวางแผนการรักษาความปลอดภัยราคาเฉลี่ยการเคลื่อนไหวของราคาจะเรียบออก เมื่อความผันผวนแบบวันต่อวันจะถูกเอาออกผู้ค้าจะสามารถระบุแนวโน้มที่แท้จริงได้ดีขึ้นและเพิ่มความเป็นไปได้ที่จะใช้ประโยชน์ได้ (หากต้องการเรียนรู้เพิ่มเติมอ่านบทแนะนำ "ค่าเฉลี่ยเคลื่อนที่") ประเภทของค่าเฉลี่ยเคลื่อนที่มีค่าเฉลี่ยเคลื่อนที่หลายแบบแตกต่างกันไปในแต่ละวิธีที่คำนวณ แต่วิธีตีความค่าเฉลี่ยแต่ละค่ายังคงเหมือนเดิม การคำนวณมีความแตกต่างกันเพียงอย่างเดียวกับการถ่วงน้ำหนักที่พวกเขาวางไว้กับข้อมูลราคาขยับจากน้ำหนักที่เท่ากันของแต่ละจุดราคาไปเป็นน้ำหนักที่มากขึ้นเมื่อเทียบกับข้อมูลล่าสุด สามประเภทที่พบมากที่สุดของค่าเฉลี่ยเคลื่อนที่อยู่ที่ง่ายๆ เชิงเส้นและเลขชี้กำลัง Simple Moving Average (SMA) นี่เป็นวิธีที่นิยมใช้ในการคำนวณค่าเฉลี่ยเคลื่อนที่ของราคา ใช้เวลาเพียงผลรวมของราคาปิดที่ผ่านมาในช่วงเวลาและหารผลตามจำนวนราคาที่ใช้ในการคำนวณ ตัวอย่างเช่นในค่าเฉลี่ยเคลื่อนที่ 10 วันราคาปิดสุดท้าย 10 รายการจะรวมเข้าด้วยกันและหารด้วย 10 ดังที่คุณเห็นในรูปที่ 1 ผู้ประกอบการค้าสามารถที่จะทำให้ค่าเฉลี่ยของการตอบสนองต่อการเปลี่ยนแปลงราคาโดยเฉลี่ยน้อยลงโดยการเพิ่มจำนวน ของรอบระยะเวลาที่ใช้ในการคำนวณ การเพิ่มจำนวนช่วงเวลาในการคำนวณเป็นวิธีที่ดีที่สุดในการวัดความแข็งแกร่งของแนวโน้มในระยะยาวและโอกาสที่จะกลับรายการ หลายคนอ้างว่าประโยชน์ของค่าเฉลี่ยประเภทนี้มีข้อ จำกัด เนื่องจากแต่ละจุดในชุดข้อมูลมีผลกระทบต่อผลลัพธ์โดยไม่คำนึงถึงตำแหน่งที่เกิดขึ้นในลำดับ นักวิจารณ์ยืนยันว่าข้อมูลล่าสุดมีความสำคัญมากขึ้นและควรมีการถ่วงน้ำหนักที่สูงขึ้น การวิพากษ์วิจารณ์ประเภทนี้เป็นหนึ่งในปัจจัยหลักที่นำไปสู่การประดิษฐ์รูปแบบอื่น ๆ ของค่าเฉลี่ยเคลื่อนที่ ค่าเฉลี่ยถ่วงน้ำหนักเชิงเส้นตัวบ่งชี้ค่าเฉลี่ยเคลื่อนที่นี้เป็นค่าเฉลี่ยที่น้อยที่สุดจากสามตัวและใช้เพื่อแก้ปัญหาเกี่ยวกับการถ่วงน้ำหนักเท่ากัน เส้นค่าเฉลี่ยเคลื่อนที่แบบถ่วงน้ำหนักแบบเส้นตรงคำนวณจากผลรวมของราคาปิดทั้งหมดในช่วงเวลาหนึ่งและคูณด้วยตำแหน่งของจุดข้อมูลและหารด้วยผลรวมของจำนวนงวด ตัวอย่างเช่นในระยะเวลาห้าวันโดยถัวเฉลี่ยถ่วงน้ำหนักราคาปิดในปัจจุบันจะคูณด้วยห้าวันวานโดยสี่เป็นต้นจนกระทั่งถึงวันแรกในช่วงระยะเวลา ตัวเลขเหล่านี้จะถูกรวมกันและหารด้วยผลรวมของตัวคูณ ค่าเฉลี่ยการเคลื่อนที่แบบ Exponential (EMA) การคำนวณค่าเฉลี่ยเคลื่อนที่นี้ใช้ปัจจัยที่ราบเรียบเพื่อให้น้ำหนักที่สูงขึ้นในจุดข้อมูลล่าสุดและถือว่ามีประสิทธิภาพมากกว่าค่าเฉลี่ยถ่วงน้ำหนักแบบเส้นตรง ไม่จำเป็นต้องมีความเข้าใจในการคำนวณสำหรับผู้ค้าส่วนใหญ่เนื่องจากส่วนใหญ่แพคเกจแผนภูมิทำคำนวณสำหรับคุณ สิ่งสำคัญที่สุดที่ต้องจดจำเกี่ยวกับค่าเฉลี่ยเคลื่อนที่แบบเสวนาก็คือการตอบสนองต่อข้อมูลใหม่ ๆ เมื่อเทียบกับค่าเฉลี่ยเคลื่อนที่ที่เรียบง่าย การตอบสนองนี้เป็นหนึ่งในปัจจัยสำคัญที่ทำให้ค่าเฉลี่ยเคลื่อนที่ของทางเลือกในหมู่ผู้ค้าทางเทคนิคจำนวนมาก ดังที่เห็นในรูปที่ 2 EMA ระยะเวลา 15 วันจะเพิ่มขึ้นและลดลงเร็วกว่า SMA 15 ช่วง ความแตกต่างเล็กน้อยนี้ดูเหมือนจะไม่ค่อยมากนัก แต่เป็นปัจจัยสำคัญที่ต้องคำนึงถึงเนื่องจากอาจมีผลกระทบต่อ การใช้ค่าเฉลี่ยของค่าเฉลี่ยเคลื่อนที่ค่าเฉลี่ยเคลื่อนที่จะใช้เพื่อระบุแนวโน้มในปัจจุบันและการกลับรายการแนวโน้มเช่นเดียวกับการตั้งค่าการสนับสนุนและระดับความต้านทาน ค่าเฉลี่ยเคลื่อนที่สามารถใช้เพื่อระบุได้อย่างรวดเร็วว่าการรักษาความปลอดภัยมีการเคลื่อนไหวในขาขึ้นหรือขาลงหรือไม่ขึ้นอยู่กับทิศทางของค่าเฉลี่ยเคลื่อนที่ ดังที่เห็นในรูปที่ 3 เมื่อค่าเฉลี่ยเคลื่อนที่เคลื่อนขึ้นสูงและราคาอยู่เหนือระดับความปลอดภัยจะอยู่ในแนวโน้มขาขึ้น ในทางกลับกันค่าเฉลี่ยเคลื่อนที่ที่หดตัวลงพร้อมกับราคาด้านล่างสามารถนำมาใช้เป็นสัญญาณขาลง อีกวิธีหนึ่งในการกำหนดโมเมนตัมคือการดูลำดับของค่าเฉลี่ยเคลื่อนที่สองเส้น เมื่อค่าเฉลี่ยระยะสั้นอยู่เหนือค่าเฉลี่ยระยะยาวแนวโน้มจะเพิ่มขึ้น ในทางกลับกันค่าเฉลี่ยระยะยาวที่สูงกว่าค่าเฉลี่ยระยะสั้นจะส่งผลให้แนวโน้มการปรับตัวลดลง การย้ายการพลิกกลับของค่าเฉลี่ยจะเกิดขึ้นในสองวิธีหลัก ๆ คือเมื่อราคาเคลื่อนผ่านค่าเฉลี่ยเคลื่อนที่และเมื่อเคลื่อนที่ผ่านค่าไขว้เฉลี่ยเคลื่อนไหว สัญญาณแรกที่พบคือเมื่อราคาเคลื่อนผ่านค่าเฉลี่ยเคลื่อนที่ที่สำคัญ ตัวอย่างเช่นเมื่อราคาหลักทรัพย์ที่อยู่ในช่วงขาลงลดลงต่ำกว่าค่าเฉลี่ยเคลื่อนที่ในช่วง 50 เช่นในรูปที่ 4 จะเป็นสัญญาณว่าแนวโน้มขากลับอาจย้อนกลับ สัญญาณอื่น ๆ ของการกลับรายการแนวโน้มคือเมื่อค่าเฉลี่ยเคลื่อนที่หนึ่งตัวผ่านไปมาอีก ตัวอย่างเช่นที่คุณเห็นในรูปที่ 5 ถ้าค่าเฉลี่ยเคลื่อนที่ 15 วันสูงกว่าค่าเฉลี่ยเคลื่อนที่ 50 วันนั่นเป็นสัญญาณบวกที่ราคาจะเริ่มเพิ่มขึ้น หากระยะเวลาที่ใช้ในการคำนวณค่อนข้างสั้นตัวอย่างเช่น 15 และ 35 อาจส่งสัญญาณการกลับรายการในระยะสั้น ในทางกลับกันเมื่อค่าเฉลี่ยสองค่าที่มีกรอบเวลาที่ค่อนข้างยาว (เช่น 50 และ 200) จะใช้เพื่อแนะนำการเปลี่ยนแปลงในระยะยาว อีกวิธีหนึ่งในการคำนวณค่าเฉลี่ยเคลื่อนที่คือการระบุระดับการสนับสนุนและความต้านทาน ไม่ใช่เรื่องแปลกที่จะเห็นสต็อกที่ได้รับการล้มหยุดการลดลงและทิศทางย้อนกลับเมื่อมันกระทบการสนับสนุนของค่าเฉลี่ยเคลื่อนที่ที่สำคัญ การเคลื่อนที่ผ่านค่าเฉลี่ยเคลื่อนที่ที่สำคัญมักถูกใช้เป็นสัญญาณโดยผู้ค้าทางเทคนิคว่าเทรนด์กำลังถอยกลับ ตัวอย่างเช่นถ้าราคาพักผ่านเส้นค่าเฉลี่ยเคลื่อนที่ 200 วันในทิศทางที่ลดลงสัญญาณนี้จะเป็นสัญญาณว่าแนวโน้มขากลับกำลังถอยกลับ ค่าเฉลี่ยเคลื่อนที่เป็นเครื่องมือที่มีประสิทธิภาพในการวิเคราะห์แนวโน้มด้านความปลอดภัย พวกเขาให้การสนับสนุนที่มีประโยชน์และจุดความต้านทานและใช้งานง่ายมาก กรอบเวลาที่พบบ่อยที่สุดที่ใช้เมื่อสร้างค่าเฉลี่ยเคลื่อนที่ ได้แก่ 200 วัน 100 วัน 50 วัน 20 วันและ 10 วัน ค่าเฉลี่ย 200 วันนับเป็นวัดที่ดีสำหรับปีการค้าขายซึ่งเป็นค่าเฉลี่ยครึ่งวันของ 100 วันซึ่งเป็นค่าเฉลี่ย 50 วันของไตรมาสโดยเฉลี่ยอยู่ที่ 20 วันต่อเดือนและ 10 วันเฉลี่ย 2 สัปดาห์ การเคลื่อนย้ายค่าเฉลี่ยช่วยให้ผู้ค้าทางเทคนิคสามารถเอื้ออำนวยต่อการเคลื่อนไหวของราคาในแต่ละวันซึ่งทำให้ผู้ค้ามองเห็นแนวโน้มราคาได้ชัดเจนยิ่งขึ้น จนถึงตอนนี้เรามุ่งเน้นการเคลื่อนไหวของราคาผ่านแผนภูมิและค่าเฉลี่ย ในส่วนถัดไปให้ดูเทคนิคอื่น ๆ ที่ใช้เพื่อยืนยันการเคลื่อนไหวและรูปแบบราคา การวิเคราะห์ทางเทคนิค: ตัวบ่งชี้และ Oscillators เพิ่มแนวโน้มหรือย้ายเส้นค่าเฉลี่ยไปเป็นแผนภูมินำไปใช้กับ: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 More น้อยกว่าเพื่อแสดงแนวโน้มข้อมูลหรือค่าเฉลี่ยเคลื่อนที่ในแผนภูมิที่คุณสร้างขึ้น คุณสามารถเพิ่มเส้นแนวโน้มได้ นอกจากนี้คุณยังสามารถขยายเส้นแนวโน้มเกินกว่าข้อมูลจริงของคุณเพื่อช่วยในการคาดการณ์ค่าในอนาคต ตัวอย่างเช่นเส้นแนวโน้มดังต่อไปนี้คาดการณ์ล่วงหน้า 2 ไตรมาสและแสดงให้เห็นชัดเจนว่ามีแนวโน้มสูงขึ้นซึ่งน่าจะเป็นไปได้สำหรับการขายในอนาคต คุณสามารถเพิ่มเส้นแนวโน้มลงในแผนภูมิ 2 มิติที่ไม่ได้ถูกจัดวางรวมทั้งพื้นที่แถบเส้นคอลัมน์สต็อกการกระจายและฟองอากาศ คุณไม่สามารถเพิ่มเส้นแนวโน้มลงในแผนภูมิแบบวง, 3 มิติ, เรดาร์, พาย, พื้นผิวหรือโดนัท เพิ่มเส้นแนวโน้มบนแผนภูมิของคุณคลิกชุดข้อมูลที่คุณต้องการเพิ่มเส้นแนวโน้มหรือค่าเฉลี่ยเคลื่อนที่ เส้นแนวโน้มจะเริ่มต้นที่จุดข้อมูลแรกของชุดข้อมูลที่คุณเลือก ทำเครื่องหมายที่ช่อง Trendline หากต้องการเลือกเส้นแนวโน้มประเภทอื่นให้คลิกลูกศรถัดจากเส้นแนวโน้ม แล้วคลิกเลขชี้กำลัง พยากรณ์เชิงเส้น หรือสองค่าเฉลี่ยเคลื่อนที่ระยะเวลา สำหรับเส้นแนวโน้มเพิ่มเติมคลิกตัวเลือกเพิ่มเติม หากคุณเลือก More Options คลิกตัวเลือกที่คุณต้องการในบานหน้าต่าง 'รูปแบบเส้นขอบ' ภายใต้ตัวเลือกของ Trendline ถ้าคุณเลือกพหุนาม ป้อนพลังงานสูงสุดสำหรับตัวแปรอิสระในกล่องคำสั่งซื้อ หากเลือก Moving Average ป้อนจำนวนงวดที่จะใช้ในการคำนวณค่าเฉลี่ยเคลื่อนที่ในช่องงวด เคล็ดลับ: เส้นแนวโน้มมีความถูกต้องที่สุดเมื่อค่า R-squared (ตัวเลขตั้งแต่ 0 ถึง 1 แสดงให้เห็นว่าค่าประมาณสำหรับเส้นแนวโน้มใกล้เคียงกับข้อมูลจริงของคุณมากน้อยเพียงใด) อยู่ที่หรือใกล้เคียง 1. เมื่อคุณเพิ่มเส้นแนวโน้มลงในข้อมูลของคุณ , Excel จะคำนวณค่า R-squared โดยอัตโนมัติ คุณสามารถแสดงค่านี้ในแผนภูมิของคุณได้โดยการตรวจสอบค่า Display R-squared ในกล่องแผนภูมิ (แผงเส้นแนวโน้มรูปแบบตัวเลือก Trendline) คุณสามารถเรียนรู้เพิ่มเติมเกี่ยวกับตัวเลือกเส้นแนวโน้มทั้งหมดในส่วนด้านล่าง เส้นแนวโน้มเชิงเส้นใช้เส้นแบบนี้เพื่อสร้างเส้นตรงที่ดีที่สุดสำหรับชุดข้อมูลเชิงเส้นอย่างง่าย ข้อมูลของคุณเป็นเส้นตรงถ้ารูปแบบในจุดข้อมูลมีลักษณะเป็นเส้น เส้นแนวโน้มจะแสดงให้เห็นว่ามีบางอย่างที่เพิ่มขึ้นหรือลดลงในอัตราที่คงที่ เส้นตรงใช้สมการนี้ในการคำนวณสมการกำลังสองอย่างน้อยที่สุดสำหรับเส้น: โดย m คือความลาดชันและ b คือการสกัดกั้น เส้นแสดงแนวโน้มต่อไปนี้แสดงให้เห็นว่ายอดขายตู้เย็นเพิ่มขึ้นอย่างต่อเนื่องตลอดระยะเวลา 8 ปี สังเกตว่าค่า R-squared (ตัวเลขตั้งแต่ 0 ถึง 1 แสดงให้เห็นว่าค่าประมาณสำหรับเส้นแนวโน้มใกล้เคียงกับข้อมูลจริงของคุณมากน้อยแค่ไหน) เป็น 0.9792 ซึ่งเป็นเส้นที่เหมาะสมกับข้อมูล เส้นโค้งที่พอดีกับเส้นโค้งที่ดีที่สุดเส้นแนวโน้มนี้จะเป็นประโยชน์เมื่ออัตราการเปลี่ยนแปลงข้อมูลเพิ่มขึ้นหรือลดลงอย่างรวดเร็วและลดระดับลง เส้นค่าลอการิทึมสามารถใช้ค่าลบและค่าบวกได้ เส้นรอบวงลอการิทึมใช้สมการนี้ในการคำนวณสมการสี่เหลี่ยมที่เล็กที่สุดผ่านจุด: c และ b เป็นค่าคงที่และ ln เป็นฟังก์ชันลอการิทึมธรรมชาติ เส้นค่าลอการิทึมต่อไปนี้แสดงการเติบโตของประชากรที่คาดการณ์ไว้ของสัตว์ในพื้นที่ว่างคงที่โดยที่ประชากรลดลงเป็นพื้นที่สำหรับสัตว์ลดลง โปรดทราบว่าค่า R-squared เท่ากับ 0.933 ซึ่งเป็นเส้นที่เหมาะสมกับข้อมูล เส้นแนวโน้มนี้มีประโยชน์เมื่อข้อมูลของคุณผันผวน ตัวอย่างเช่นเมื่อคุณวิเคราะห์ผลกำไรและขาดทุนจากชุดข้อมูลขนาดใหญ่ ลำดับของพหุนามสามารถกำหนดได้จากจำนวนความผันผวนของข้อมูลหรือจำนวนโค้ง (เนินเขาและหุบเขา) ปรากฏในเส้นโค้ง โดยปกติคำสั่ง Order 2 polynomial trendline มีเพียงเนินเขาหรือหุบเขาคำสั่ง Order 3 มีภูเขาหรือหุบเขาหนึ่งหรือสองแห่งและลำดับที่ 4 มีถึง 3 เนินหรือหุบเขา เส้นรอบวงหรือ curvilinear trendline ใช้สมการนี้ในการคำนวณสมการอย่างน้อยสี่เหลี่ยมผ่านจุด: ที่ b และเป็นค่าคงที่ พหุนามสองสายสั่งซื้อ (หนึ่งเนิน) แสดงความสัมพันธ์ระหว่างความเร็วในการขับขี่และการสิ้นเปลืองน้ำมันเชื้อเพลิง สังเกตว่าค่า R-squared เท่ากับ 0.979 ซึ่งใกล้เคียงกับ 1 ดังนั้นเส้นจะพอดีกับข้อมูล แสดงเส้นโค้งเส้นแนวโน้มนี้มีประโยชน์สำหรับชุดข้อมูลที่เปรียบเทียบการวัดที่เพิ่มขึ้นในอัตราเฉพาะ ตัวอย่างเช่นการเร่งความเร็วของรถแข่งในช่วงเวลา 1 วินาที คุณไม่สามารถสร้างเส้นแนวโน้มกำลังได้ถ้าข้อมูลของคุณมีค่าเป็นศูนย์หรือค่าลบ เส้นกำลังกำลังใช้สมการนี้เพื่อคำนวณสมการกำลังสองอย่างน้อยที่สุดผ่านจุด: c และ b เป็นค่าคงที่ หมายเหตุ: ตัวเลือกนี้จะใช้ไม่ได้เมื่อข้อมูลของคุณมีค่าเป็นลบหรือเป็นศูนย์ แผนภูมิวัดระยะทางต่อไปนี้แสดงระยะทางเป็นหน่วยเป็นวินาที เส้นแรงที่แสดงให้เห็นถึงการเพิ่มขึ้นอย่างรวดเร็ว โปรดทราบว่าค่า R-squared เท่ากับ 0.986 ซึ่งเป็นเส้นที่สมบูรณ์แบบเกือบทั้งหมดของข้อมูล แสดงเส้นโค้งเส้นแนวโน้มนี้มีประโยชน์เมื่อค่าข้อมูลเพิ่มขึ้นหรือลดลงอย่างต่อเนื่องตามอัตราที่เพิ่มขึ้น คุณไม่สามารถสร้างเส้นแสดงแนวโน้มเป็นตัวเลขได้หากข้อมูลของคุณมีค่าเป็นศูนย์หรือค่าลบ เสนเสนยอยใชสมการนี้เพื่อคํานวณสมการสแควรอยางนอยที่สุดโดยที่จุด c และ b เปนคาคงที่และ e เปนฐานของลอการิทึมตามธรรมชาติ เส้นแสดงเส้นโครงร่างต่อไปนี้แสดงถึงปริมาณคาร์บอน 14 ที่ลดลงในวัตถุเมื่ออายุมากขึ้น โปรดทราบว่าค่า R-squared เท่ากับ 0.990 ซึ่งหมายความว่าเส้นตรงกับข้อมูลเกือบสมบูรณ์ เส้นแนวโน้มการเคลื่อนที่เฉลี่ยแนวโน้มนี้จะแสดงถึงความผันผวนของข้อมูลเพื่อแสดงรูปแบบหรือแนวโน้มที่ชัดเจนขึ้น ค่าเฉลี่ยเคลื่อนที่จะใช้จำนวนจุดข้อมูลที่ระบุ (กำหนดโดยตัวเลือก Period) โดยให้ค่าเฉลี่ยโดยเฉลี่ยและใช้ค่าเฉลี่ยเป็นจุดในบรรทัด ตัวอย่างเช่นถ้ากำหนดระยะเวลาเป็น 2 ค่าเฉลี่ยของจุดข้อมูลสองจุดแรกจะใช้เป็นจุดแรกในเส้นแนวโน้มเฉลี่ยเคลื่อนไหว ค่าเฉลี่ยของจุดข้อมูลที่สองและสามใช้เป็นจุดที่สองในเส้นแนวโน้ม ฯลฯ เส้นแนวโน้มค่าเฉลี่ยเคลื่อนที่ใช้สมการนี้: จำนวนจุดในเส้นแนวโน้มเฉลี่ยเคลื่อนที่เท่ากับจำนวนจุดทั้งหมดในชุดลบด้วย หมายเลขที่คุณระบุสำหรับงวด ในแผนภูมิกระจายเส้นแนวโน้มจะขึ้นอยู่กับลำดับของค่า x ในแผนภูมิ สำหรับผลลัพธ์ที่ดีขึ้นให้จัดเรียงค่า x ก่อนที่จะเพิ่มค่าเฉลี่ยเคลื่อนที่ เส้นค่าเฉลี่ยเคลื่อนที่เฉลี่ยต่อไปนี้แสดงรูปแบบจำนวนบ้านที่ขายในช่วง 26 สัปดาห์
No comments:
Post a Comment